Sejam bem vindos!

Saúde e Bem Estar

Tratamentos personalizados

Bel Col, Adcos e Vita Derm

*Pré e pós operatorio de cirurgia plastica e outras

*Limpeza de Pele

*Tratamento de Acne

*Tratamentos faciais para rejuvenescimento e combate a flacidez

*Hidratação facial

*Drenagem linfática

*Tratamentos corporais de Redução de Medidas e Celulite

*Talasoterapia

*Estimulação Russa

*Hidratação Corporal

*Argiloterapia

*Massagem Relaxante com Pedras

*Aromoterapia

*Nutrição

*Dia da Noiva

Agora tambem Auriculoterapia e Depilação

Venha fazer sua avaliação gratuita!









http://marcelapagliuso-estetica.blogspot.com/





Orkut: Espaço Estético Marcela Pagliuso







Agende seu horario e ou avaliação pelo Telefone fixo

(035) 35210401 Passos/MG

sexta-feira, 18 de junho de 2010

Licopeno como agente antioxidante


Artigo cientifico 2

Licopeno como agente antioxidante 03/07/2005
Rev. Nutr. vol.17 no.2 Campinas Apr./June 2004
COMUNICAÇÃO COMMUNICATION

Najua Jum Ismail Esh ShamiI; Emília Addison Machado MoreiraII, 1

-------------------------------------------------

RESUMO
Este trabalho constitui uma revisão de dados científicos sobre o consumo de licopeno e sua ação como fator antioxidante. O licopeno é considerado o carotenóide que possui a maior capacidade seqüestrante do oxigênio singlete. Radicais livres agem continuamente no organismo, podendo desencadear danos celulares e serem os responsáveis pelo desenvolvimento de câncer e certas doenças crônicas. Estudos mostram que o licopeno protege moléculas de lipídios, lipoproteínas de baixa densidade, proteínas e DNA contra o ataque dos radicais, tendo um papel essencial na proteção de doenças. Como prevenção, preconiza-se o consumo de dietas ricas em alimentos fontes de licopeno: tomates e seus produtos (purê, pasta, catchup), mamão, pitanga e goiaba; que aportem cerca de 35mg de licopeno ao dia.

Termos de indexação: licopeno, antioxidantes, radicais livres, carotenóides, tomates, Lycopersicon esculentum.
--------------------------------------------------------------------------------

INTRODUÇÃO

A preocupação com a ação dos antioxidantes e a sua relação com os radicais livres se tornou essencial à compreensão de algumas etiopatogenias.

Os radicais livres são átomos ou moléculas produzidas continuamente durante os processos metabólicos e atuam como mediadores para a transferência de elétrons em várias reações bioquímicas, desempenhando funções relevantes no metabolismo. As principais fontes de radicais livres são as organelas citoplasmáticas que metabolizam o oxigênio, o nitrogênio e o cloro, gerando grande quantidade de metabólitos.

A produção excessiva de radicais livres pode conduzir a diversas formas de dano celular e sua cronicidade pode estar envolvida com a etiogênese ou com o desenvolvimento de numerosas doenças.

As lesões causadas pelos radicais livres nas células podem ser prevenidas ou reduzidas por meio da atividade de antioxidantes, sendo estes encontrados em muitos alimentos.

Os antioxidantes podem agir diretamente na neutralização da ação dos radicais livres ou participar indiretamente de sistemas enzimáticos com essa função. Dentre os antioxidantes estão a vitamina C, a glutationa, o ácido úrico, a vitamina E e os carotenóides.

Os carotenóides, juntamente com as vitaminas, são as substâncias mais investigadas como agentes quimiopreventivos, funcionando como antioxidantes em sistemas biológicos.
Algumas das principais fontes de carotenóides são cenouras e abóboras (a e b-caroteno), tomates e produtos derivados, como extrato, polpa e molhos (licopeno) e espinafre (luteína).
O licopeno aparece atualmente como um dos mais potentes antioxidantes, sendo sugerido na prevenção da carcinogênese e aterogênese por proteger moléculas como lipídios, lipoproteínas de baixa densidade (LDL), proteínas e DNA.
Assim, esta revisão traz uma breve descrição da ação de radicais livres e antioxidantes, enfatizando o licopeno como agente na prevenção de certas doenças crônicas, bem como a sua utilização na prática nutricional.

AÇÃO DOS RADICAIS LIVRES NO ORGANISMO

O termo radical livre é freqüentemente usado para designar qualquer átomo ou molécula com existência independente, contendo um ou mais elétrons não pareados, nos orbitais externos. Isto determina uma atração para um campo magnético, o que pode torná-lo altamente reativo, capaz de reagir com qualquer composto situado próximo à sua órbita externa, passando a ter uma função oxidante ou redutora de elétrons.

Dentre os radicais livres estão incluídos o superóxido (O2•-), a hidroxila (OH•), o hidroperóxido (HO2•), o óxido nítrico (NO•) e o dióxido de nitrogênio (NO2•).6 Destes, o radical hidroxila é o mais reativo na indução de lesões nas moléculas celulares e o peróxido de hidrogênio, apesar de não ser considerado um potente radical livre, é capaz de atravessar a membrana nuclear e induzir danos na molécula de DNA.

A geração de radicais livres constitui uma ação contínua e fisiológica, cumprindo funções biológicas essenciais. São formados em um cenário de reações de óxido-redução, provocando ou resultando dessas reações. Podem ceder o elétron solitário e serem oxidados; ou podem receber outro elétron e serem reduzidos.

São gerados a partir de dois sistemas enzimáticos: o sistema oxidativo de NADP+/NADP+H+ e o da mieloperoxidase. Sua fonte principal de produção é a explosão respiratória (respiratory burst) durante a ativação de glóbulos brancos como neutrófilos, monócitos, macrófagos, eosinófilos, entre outros. Podem também ser formados a partir do oxigênio e seus derivados, dos radicais alcoxi e peróxido, do ozônio, de metais de transição e da reação de Fenton.
A geração de radicais livres pode ocorrer no citoplasma, nas mitocôndrias ou na membrana, e o seu alvo celular (proteínas, lipídeos, carboidratos e moléculas de DNA) está relacionado com seu sítio de formação.

Como fontes exógenas de radicais livres encontramos as radiações gama e ultravioleta, os medicamentos, a dieta, o cigarro e os poluentes ambientais.

Embora uma pequena quantidade de radicais livres seja necessária para manutenção da vida, sua produção excessiva, maior do que a sua velocidade de remoção, pode conduzir a diversas formas de dano celular. Cooper cita que animais demonstraram lesões tissulares, diminuição do crescimento e outros danos quando eram expostos a concentrações elevadas de oxigênio. Em humanos, a respiração de oxigênio puro durante um período de até 6 horas causava mal estar torácico, tosse e dor de garganta; períodos de exposição mais prolongados eram capazes de destruir células das vias respiratórias.

Em um organismo, a existência de um desequilíbrio em favor da geração excessiva de radicais livres, ou em detrimento da velocidade de remoção destas espécies, é conhecida como estresse oxidativo e pode conduzir à oxidação maciça de substratos biológicos. A cronicidade desse estresse oxidativo, no ambiente celular, pode causar severos problemas metabólicos e estar envolvida na origem e no desenvolvimento de numerosas doenças.

Buzzini & Matsudo relatam que os radicais livres além do próprio processo de envelhecimento, estão envolvidos em aproximadamente 40 doenças, entre as quais o câncer e a aterosclerose, as duas principais causas de morte atualmente.

Além do câncer e da aterosclerose, os efeitos tóxicos dos radicais livres estão relacionados com doenças como porfirias, cataratas, sobrecarga de ferro e cobre, doença de Alzheimer, diabetes, inflamações crônicas, doenças auto-imunes e situações de injúria por isquemia. Outras causas da ação de radicais livres é a ocorrência da doença de Parkinson, da artrite reumatóide e da doença intestinal inflamatória1.

Além disso, o ataque dos radicais sobre o DNA, RNA e proteínas pode gerar citotoxicidade, alergias, mutagênese e/ou carcinogênese, dependendo da proporção da exposição.
De maneira geral, a toxicidade local dos radicais livres e de outros produtos tóxicos do oxigênio constitui a via comum final da lesão tecidual em uma variedade de doenças.

CAROTENÓIDES COMO AGENTES ANTIOXIDANTES

Os antioxidantes podem ser definidos como qualquer substância que, presente em baixas concentrações, quando comparada a um substrato oxidável, atrasa ou inibe a oxidação desse substrato de maneira eficaz.

O sistema de defesa antioxidante é formado por compostos enzimáticos e não-enzimáticos, estando presentes tanto no organismo (localizados dentro das células ou na circulação sangüínea) como nos alimentos ingeridos.

No sistema enzimático estão presentes as enzimas superóxido-dismutase, glutationa-peroxidase e catalases. Várias enzimas antioxidantes são metaloenzimas, que contêm traços de minerais. A glutationa-peroxidase é uma enzima dependente de selênio, e a enzima superóxido-dismutase contém manganês, zinco ou cobre, dependendo da sua localização nos compartimentos celulares.

Dos componentes não-enzimáticos da defesa antioxidante destacam-se alguns minerais (cobre, manganês, zinco, selênio e ferro), vitaminas (ácido ascórbico, vitamina E, vitamina A), carotenóides (beta-caroteno, licopeno e luteína), bioflavonóides (genisteína, quercetina) e taninos (catequinas).

Os carotenóides são corantes naturais presentes nas frutas e vegetais (cenouras, tomates, espinafre, laranjas, pêssegos, entre outros), sendo que sua estrutura química é composta por ligações duplas conjugadas, que são responsáveis por sua cor e por algumas de suas funções biológicas.

Estudos mostram a relação entre o aumento no consumo de alimentos ricos em carotenóides e a diminuição no risco de várias doenças. Segundo Olson22, os carotenóides seqüestram o oxigênio singlete, removem os radicais peróxidos, modulam o metabolismo carcinogênico, inibem a proliferação celular, estimulam a comunicação entre células (junções gap), e elevam a resposta imune.

Testes in vitro e in vivo sugerem que os carotenóides são excelentes antioxidantes, seqüestrando e inativando os radicais livres. A ação seqüestrante de radicais é proporcional ao número de ligações duplas conjugadas, presentes nas moléculas dos carotenóides. O mecanismo pelo qual os carotenóides protegem os sistemas biológicos dos radicais depende da transferência de energia do oxigênio excitado para a molécula do carotenóide, em que a energia é dissipada por meio de rotações e vibrações do carotenóide no meio solvente.

Os carotenóides reagem com os radicais livres, notavelmente com os radicais peróxidos e com o oxigênio molecular, sendo a base de sua ação antioxidante.

Carotenóides como o beta-caroteno, licopeno, zeaxantina e luteína, exercem funções antioxidantes em fases lipídicas, bloqueando os radicais livres que danificam as membranas lipoprotéicas.

LICOPENO COMO ANTIOXIDANTE

O licopeno é um carotenóide sem a atividade pró-vitamina A, lipossolúvel, composto por onze ligações conjugadas e duas ligações duplas não conjugadas.

O licopeno é tido como o carotenóide que possui a maior capacidade seqüestrante do oxigênio singlete, possivelmente devido à presença das duas ligações duplas não conjugadas, o que lhe oferece maior reatividade.
É o carotenóide predominante no plasma e nos tecidos humanos, sendo encontrado em um número limitado de alimentos de cor vermelha, como tomates e seus produtos, goiaba, melancia, mamão e pitanga. Tomates e derivados aparecem como as maiores fontes de licopeno. O tomate cru apresenta, em média, 30mg de licopeno/kg do fruto; o suco de tomate cerca de 150mg de licopeno/litro; e o catchup contém em média 100mg/kg.

O licopeno presente nos tomates varia conforme o tipo e o grau de amadurecimento dos mesmos. Segundo Giovannucci, o tomate vermelho maduro contém maior quantidade de licopeno que de beta-caroteno, sendo responsável pela cor vermelha predominante. As cores das espécies de tomate diferem do amarelo para o vermelho alaranjado, dependendo da razão licopeno/beta-caroteno da fruta, que também está associada com a presença da enzima beta-ciclase, a qual participa da transformação do licopeno em beta-caroteno.

Em relação à biodisponibilidade, verificou-se que o consumo de molho de tomate aumenta as concentrações séricas de licopeno em taxas maiores do que o consumo de tomates crus ou suco de tomate fresco. A ingestão de molho de tomate cozido em óleo resultou em um aumento de 2 a 3 vezes da concentração sérica de licopeno um dia após sua ingestão, mas nenhuma alteração ocorreu quando se administrou suco de tomate fresco.

Essa diferença de biodisponibilidade está relacionada com as formas isoméricas apresentadas pelo licopeno. Clinton et al.31 demonstraram que 79% a 91% do licopeno presente nos tomates e seus produtos encontram-se sob a forma do isômero trans (trans-licopeno), em contraste com os níveis de licopeno sérico e tissulares, que se encontram em mais de 50% na forma de isômero cis (cis-licopeno). O licopeno ingerido, na sua forma natural (trans-licopeno), é pouco absorvido, mas estudos demostram que o processamento térmico dos tomates e seus produtos melhora a sua biodisponibilidade. O processamento térmico rompe a parede celular e permite a extração do licopeno dos cromoplastos.

Os nutrientes presentes no tomate (lipídios, proteínas e fibras) podem contribuir para a estabilidade dos trans-isômeros de licopeno na fruta. Durante a digestão e absorção, o licopeno é separado dos demais nutrientes e incorporado a micelas. É possível que ocorra a isomerização do licopeno nesta separação, alterando a configuração do licopeno de trans para cis-isômero. Dados sugerem que os cis-isômeros de licopeno são mais bem absorvidos, pela sua melhor solubilidade em micelas e por não se agregarem.

Alguns tipos de fibras, encontradas nos alimentos, como a pectina, podem reduzir a biodisponibilidade do licopeno, diminuindo a sua absorção devido ao aumento da viscosidade.

CONSUMO DE LICOPENO NA PRÁTICA NUTRICIONAL

O licopeno, como os demais carotenóides, se encontra em maiores quantidades na casca dos alimentos, aumentando consideravelmente durante o seu amadurecimento. Sua concentração é maior nos alimentos produzidos em regiões de climas quentes.
O efeito climático ou geográfico sobre a quantidade do licopeno presente em frutas pode ser verificado comparando-se o cultivo em regiões diferentes. O tomate comum brasileiro tem menores quantidades de licopeno do que a goiaba, o mamão tailândia e a pitanga; no entanto, outras variedades de tomate podem ter maiores concentrações de licopeno .

A quantidade de licopeno em produtos processados depende da composição do alimento de origem e das condições de processamento. Os níveis de licopeno nos produtos processados são geralmente maiores do que os encontrados em alimentos crus, dado que há concentração do produto no processamento, como pode ser visto no purê e na pasta de tomate .
Segundo um estudo realizado, no Canadá por Rao et al.48, a média de ingestão de licopeno, verificada por meio de questionários de freqüência alimentar, foi de 25mg por dia, com 50% desta ingestão representada por tomates frescos. Considerando que os tomates frescos são menos biodisponíveis que os tomates processados, os autores concluíram que uma maior ingestão de tomates processados seria aconselhada. Desta forma, Rao & Agarwal46 sugerem que o valor de 35mg/dia seria uma ingestão média diária apropriada deste antioxidante.
Um exemplo de cardápios de 2000kcal, utilizando fontes de licopeno (tomates e produtos, goiaba vermelha, mamão). O valor nutricional do cardápio é: Energia: 2000kcal; Proteínas: 65 gramas (12,5%); Carboidratos: 323 gramas (65%); Lipídios: 50 gramas (22,5%); Licopeno: 36mg.

Portanto, como orientação dietética seria necessário estimular o consumo de alimentos fontes de licopeno, bem como de frutas e vegetais ricos em antioxidantes de maneira geral, procurando suprir as necessidades diárias, para evitar o estresse oxidativo e os danos celulares.

REFERÊNCIAS

1. Méndez Filho JD, Rodríguez HGR. Sobre los benefícios de los radicales libres. Rev Med IMSS 1997; 35(4):309-13.

2. Speisky HC, Jiménez IT. Radicales libres y antioxidantes en la prevención de enfermidades III: evidencias clínico epidemiológicas de los riesgos y beneficios asociados al consumo de antioxidantes en la prevención de enfermidades cardiovasculares. Rev Chil Nutr 2000; 27(3): 314-25.

3. Papas AM. Diet and antioxidant status. Food Chem Toxicol 1999; 37:999-1007.

4. Halliwell B, Gutterdge JMC. Antioxidant defenses. In: Free radicals in biology and medicine. 3rd ed. Oxford: Clarenton Press; 1999. p.105-245.

5. Pool-Zobel BL, Bub A, Müller H, Wollowski I, Rechkemmer G. Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis 1997; 18(9):1847-50.

6. Bianchi MLP, Antunes LMG. Radicais livres e os principais antioxidantes da dieta. Rev Nutr 1999; 12(2):123-30.

7. Silva CRM, Naves MMV. Suplementação de vitaminas na prevenção de câncer. Rev Nutr 2001; 14(2):135-43.

8. Agarwal S, Rao AV. Tomato lycopene and its role in human health and chronic diseases. Canad Med Assoc J 2000; 163(6):739-44.

9. Halliwell B, Gutterdge JMC. The chemistry of free radicals and, related `reactive species'. In: Free radicals in biology and medicine. 3rd ed. Oxford: Clarenton Press; 1999. p.36-104.

__________________________________________________________________

Atenção:
" Procure o seu médico para diagnosticar doenças, indicar tratamentos e receitar remédios.
As informações disponíveis no site blog Espaço estético possuem apenas caráter educativo. '' Marcela Pagliuso


Nenhum comentário:

Postar um comentário

Observação: somente um membro deste blog pode postar um comentário.